
Exploring the World of PROC SQL® Joins

Kirk Paul Lafler, Software Intelligence Corporation

Abstract
Real systems rarely store all their data in one large table. To do so would require maintaining several duplicate
copies of the same values and could threaten the integrity of the data. Instead, IT departments everywhere almost
always split their data among several different tables. Because of this, a method is needed to simultaneously access
two or more tables to help answer the interesting questions about our data. This presentation illustrates a variety of
join processes including Cartesian Product joins, equijoins, many table joins, and outer joins.

Introduction
Joining two or more tables of data is a powerful feature found in the relational model and the SQL procedure.
Information in a database system is rarely stored in a single table because it would result in the duplication of data
values. A duplicated data value is not only inefficient, but also makes for more complex queries and updates. As a
result, data is split between two or more tables.

The SQL procedure is a simple and flexible tool for joining tables of data together. This paper presents the
importance of joins, how joins are performed without a WHERE clause, with a WHERE clause, using table aliases,
and with three tables of data. Certainly many of these techniques can be accomplished using other methods, but the
simplicity and flexibility found in the SQL procedure makes it especially interesting, if not indispensable, as a tool for
the information practitioner.

Why join Anyway?
As relational database systems continue to grow in popularity, the need to access normalized data that has been
stored in separate tables becomes increasingly important. By relating matching values in key columns in one table
with key columns in two or more tables, information can be retrieved as if the data were stored in one huge file.
Consequently, the process of joining data from two or more tables can provide new and exciting insights between
data relationships.

SQL Joins
A join of two or more tables provides a means of gathering and manipulating data in a single SELECT statement. A
"JOIN" statement does not exist in the SQL language. The way two or more tables are joined is to specify the tables
names in a WHERE clause of a SELECT statement. A comma separates each table specified in an inner join.

Joins are specified on a minimum of two tables at a time, where a column from each table is used for the purpose of
connecting the two tables. Connecting columns should have "like" values and the same datatype attributes since the
join's success is dependent on these values.

Example Tables
A relational database is simply a collection of tables. Each table contains one or more columns and one or more rows
of data. The examples presented in this paper apply an example database consisting of three tables: CUSTOMERS,
MOVIES, and ACTORS. Each table appears below.

CUSTOMERS

CUST_NO NAME CITY STATE
11321 John Smith Miami FL
44555 Alice Jones Baltimore MD
21713 Ryan Adams Atlanta GA

MOVIES

CUST_NO MOVIE_NO RATING CATEGORY
44555 1011 PG-13 Adventure
21713 3090 G Comedy
44555 2198 G Comedy
37753 4456 PG Suspense

ACTORS

MOVIE_NO LEAD_ACTOR
1011 Mel Gibson
2198 Clint Eastwood
3090 Sylvester Stallone

Joining Two Tables with a Where Clause
Joining two tables together is a relatively easy process in SQL. To illustrate how a join works, a two-table join is
linked in the following diagram.

 CUSTOMERS MOVIES

üCust_no üCust_no
 Name Movie_no
 City Rating
 State Category

The following SQL code references a join on two tables with CUST_NO specified as the connecting column.

PROC SQL;
 SELECT *
 FROM CUSTOMERS, MOVIES
 WHERE CUSTOMERS.CUST_NO =
 MOVIES.CUST_NO;
QUIT;

In this example, tables CUSTOMERS and MOVIES are used. Each table has a common column, CUST_NO which is
used to connect rows together from each when the value of CUST_NO is equal, as specified in the WHERE clause. A
WHERE clause restricts what rows of data will be included in the resulting join.

Creating a Cartesian Product
When a WHERE clause is omitted, all possible combinations of rows from each table is produced. This form of join is
known as the Cartesian Product. Say for example you join two tables with the first table consisting of 10 rows and
the second table with 5 rows. The result of these two tables would consist of 50 rows. Very rarely is there a need to
perform a join operation in SQL where a WHERE clause is not specified. The primary importance of being aware of
this form of join is to illustrate a base for all joins. Visually, the two tables would be combined without a corresponding
WHERE clause as illustrated in the following diagram. Consequently, no connection between common columns
exists.

 CUSTOMERS MOVIES

 Cust_no Cust_no
 Name Movie_no
 City Rating
 State Category

To inspect the results of a Cartes ian Product, you could submit the same code as before but without the WHERE
clause.

PROC SQL;
 SELECT *
 FROM CUSTOMERS, MOVIES;
QUIT;

Table Aliases
Table aliases provide a "short-cut" way to reference one or more tables within a join operation. One or more aliases
are specified so columns can be selected with a minimal number of keystrokes. To illustrate how table aliases in a
join works, a two-table join is linked in the following diagram.

 MOVIES M

 Cust_no ACTORS A

üMovie_no üMovie_no
 Rating Lead_actor
 Category

The following SQL code illustrates a join on two tables with MOVIE_NO specified as the connecting column. The
table aliases are specified in the SELECT statement as qualified names, the FROM clause, and the WHERE clause.

PROC SQL;
 SELECT M.MOVIE_NO,
 M.RATING,
 A.LEADING_ACTOR
 FROM MOVIES M, ACTORS A
 WHERE M.MOVIE_NO =
 A.MOVIE_NO;
QUIT;

Joining Three Tables
In an earlier example, you saw where customer information was combined with the movies they rented. You may also
want to display the leading actor of each movie along with the other information. To do this, you will need to extract
information from three different tables: CUSTOMERS, MOVIES, and ACTORS.

A join with three tables follows the same rules as in a two-table join. Each table will need to be listed in the FROM
clause with appropriate restrictions specified in the WHERE clause. To illustrate how a three table join works, the
following diagram should be visualized.

 CUSTOMERS MOVIES

üCust_no üCust_no
 Name üMovie_no
 City Rating
 State Category

 ACTORS

üMovie_no
 Lead_actor

The following SQL code references a join on three tables with CUST_NO specified as the connecting column for the
CUSTOMERS and MOVIES tables, and MOVIE_NO as the connecting column for the MOVIES and ACTORS tables.

PROC SQL;
 SELECT C.CUST_NO,
 M.MOVIE_NO,
 M.RATING,
 M.CATEGORY,
 A.LEADING_ACTOR
 FROM CUSTOMERS C,
 MOVIES M,
 ACTORS A
 WHERE C.CUST_NO = M.CUST_NO AND
 M.MOVIE_NO = A.MOVIE_NO;
QUIT;

Introduction to Outer Joins
Generally a join is a process of relating rows in one table with rows in another. But occasionally, you may want to
include rows from one or both tables that have no related rows. This concept is referred to as row preservation and is
a significant feature offered by the outer join construct.

There are operational and syntax differences between inner (natural) and outer joins. First, the maximum number of
tables that can be specified in an outer join is two (the maximum number of tables that can be specified in an inner
join is 32). Like an inner join, an outer join relates rows in both tables. But this is where the similarities end because
the result table also includes rows with no related rows from one or both of the tables. This special handling of
“matched” and “unmatched” rows of data is what differentiates an outer join from an inner join.

An outer join can accomplish a variety of tasks that would require a great deal of effort using other methods. This is
not to say that a process similar to an outer join can not be programmed – it would probably just require more work.
Let’s take a look at a few tasks that are possible with outer joins:

• List all customer accounts with rentals during the month, including customer accounts with no purchase activity.

• Compute the number of rentals placed by each customer, including customers who have not rented.

• Identify movie renters who rented a movie last month, and those who did not.

Another obvious difference between an outer and inner join is the way the syntax is constructed. Outer joins use
keywords such as LEFT JOIN, RIGHT JOIN, and FULL JOIN, and has the WHERE clause replaced with an ON
clause. These distinctions help identify outer joins from inner joins.

Finally, specifying a left or right outer join is a matter of choice. Simply put, the only difference between a left and right
join is the order of the tables they use to relate rows of data. As such, you can use the two types of outer joins
interchangeably and is one based on convenience.

Exploring Outer Joins
Outer joins process data relationships from two tables differently than inner joins. In this section a different type of
join, known as an outer join, will be illustrated. The following code example illustrates a left outer join to identify and
match movie numbers from the MOVIES and ACTORS tables. The resulting output would contain all rows for which
the SQL expression, referenced in the ON clause, matches both tables and retaining all rows from the left table
(MOVIES) that did not match any row in the right (ACTORS) table. Essentially the rows from the left table are
preserved and captured exactly as they are stored in the table itself, regardless if a match exists.

SQL Code

PROC SQL;
 SELECT movies.movie_no, leading_actor, rating
 FROM MOVIES
 LEFT JOIN
 ACTORS
 ON movies.movie_no = actors.movie_no;
QUIT;

The result of a Left Outer join is illustrated by the shaded area (A and AB) in the following diagram.

The next example illustrates the result of using a right outer join to identify and match movie titles from the MOVIES
and ACTORS tables. The resulting output would contain all rows for which the SQL expression, referenced in the ON
clause, matches in both tables (is true) and all rows from the right table (ACTORS) that did not match any row in the
left (MOVIES) table.

A B AB

SQL Code

PROC SQL;
 SELECT movies.movie_no, actor_leading, rating
 FROM MOVIES
 RIGHT JOIN
 ACTORS
 ON movies.movie_no = actors.movie_no;
QUIT;

The result of a Right Outer join is illustrated by the shaded area (AB and B) in the following diagram.

Conclusion
The SQL procedure provides a powerful way to join two or more tables of data. It's easy to learn and use. More
importantly, since the SQL procedure follows the ANSI (American National Standards Institute) guidelines, your
knowledge is portable to other platforms and vendor implementations. The simplicity and flexibility of performing joins
with the SQL procedure makes it an especially interesting, if not indispensable, tool for the information practitioner.

References
Lafler, Kirk Paul (2007), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the PharmaSUG

2007 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul and Ben Cochran (2007), “A Hands-on Tour Inside the World of PROC SQL Features,” Proceedings
of the SAS Global Forum (SGF) 2007 Conference, Software Intelligence Corporation, Spring Valley, CA, and The
Bedford Group, USA.

Lafler, Kirk Paul (2006), “A Hands-on Tour Inside the World of PROC SQL,” Proceedings of the 31st Annual SAS

Users Group International Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2005), “Manipulating Data with PROC SQL,” Proceedings of the 30th Annual SAS Users Group

International Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2004). PROC SQL: Beyond the Basics Using SAS, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2003), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the Eleventh Annual

Western Users of SAS Software Conference.

Lafler, Kirk Paul (1992-2006). PROC SQL for Beginners; Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (1998-2006). Intermediate PROC SQL ; Software Intelligence Corporation, Spring Valley, CA, USA.

SAS® Guide to the SQL Procedure: Usage and Reference, Version 6, First Edition (1990). SAS Institute, Cary, NC.

SAS® SQL Procedure User’s Guide, Version 8 (2000). SAS Institute Inc., Cary, NC, USA.

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. and other countries. ® indicates USA registration.

Acknowledgments
I would like to thank Keith Cranford, SCSUG 2007 Program Chair, for accepting my abstract and paper, as well as
the SCSUG Leadership for their support of a great Conference.

A B AB

About the Author
Kirk Paul Lafler is consultant and founder of Software Intelligence Corporation and has been programming in SAS
since 1979. As a SAS Certified Professional and SAS Institute Alliance Member (1996 – 2002), Kirk provides IT
consulting services and training to SAS users around the world. As the author of four books including PROC SQL:
Beyond the Basics Using SAS (SAS Institute. 2004), he has written more than two hundred peer-reviewed papers
and articles that have appeared in professional journals and SAS User Group proceedings. Kirk has also been an
Invited speaker at more than two hundred SAS International, regional, local, and special-interest user group
conferences and meetings throughout North America. His popular SAS Tips column, “Kirk’s Korner of Quick and
Simple Tips”, appears regularly in several SAS User Group newsletters and Web sites, and his fun-filled SASword
Puzzles is featured in SAScommunity.org.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Software Intelligence Corporation

World Headquarters
P.O. Box 1390

Spring Valley, California 91979-1390
E-mail: KirkLafler@cs.com

