
SAS® Macro Programming Tips and Techniques

Kirk Paul Lafler, Software Intelligence Corporation

Abstract
The SAS® Macro Language is a powerful tool for extending the capabilities of the SAS System. This hands -on
workshop presents numerous tips and tricks related to the construction of effective macros through the demonstration
of a collection of proven Macro Language coding techniques. Attendees learn how to process statements containing
macros; replace text strings with macro variables; generate SAS code using macros; manipulate macro variable
values with macro functions; handle global and local variables; construct arithmetic and logical expressions; interface
the macro language with the DATA step and SQL procedure; store and reuse macros; troubleshoot and debug
macros; and develop efficient and portable macro language code.

Introduction
The Macro Language is an extension to the SAS System which provides the capability to develop SAS statement text. It
consists of its own set of statements , options, functions , and has its own compiler. When programming with macro
statements, the resulting program is called a MACRO. The Macro Language has its own rules for using the various
statements and parameters. The Macro environment can be thought of as a lower level (3rd Generation) programming
environment within the SAS System.

Macro Language Basics
The macro language provides an additional set of tools to assist in: 1) communicating between SAS steps, 2) constructing
executable and reusable code, 3) designing custom languages, 4) developing user-friendly routines, and 5) conditionally
execute DATA or PROC steps.

When a program is run, the SAS System first checks to see if a macro statement exists. If the program does not
contain any macro statements, then processing continues as normal with the DATA or PROC step processor. If the
program does contain one or more macro statements, then the macro processor must first execute them. The result
of this execution is the production of character information, macro variables, or SAS statements, which are then be
passed to the DATA or PROC step processor. The control flow of a macro process appears in Figure 1 below.

The SAS System Log displays information about the compilation and execution of a SAS program. This information is a
vital part of any SAS execution which when viewed provides information about: 1) What statements were executed, 2)
What SAS System data sets were created, 3) The number of variables and observations each data set contains, and 4)
The time and memory expended by each DATA and PROC step.

Figure 1. Macro Program Control Flow.

The Anatomy of a Macro
Every macro begins with a %MACRO and must contain a name for the macro. To close a macro, a %MEND is used and
can optionally specify the macro name for documentation reasons. Macro text can include any of the following
information:

• Constant Text

• Macro Variables

• Macro Functions

• Macro Program Statements

• Macro Expressions

Constant Text
The macro language treats constant text as character strings. Examples include:

• SAS Data Set Names
• SAS Variable Names
• SAS Statements

Macro Variables
Macro variables (symbolic variables) are not DATA step variables, but belong to the SAS System macro language.
Symbolic variables, once defined, can take on many different values during the execution of a macro program. Basic rules
that apply to the naming of symbolic variables are:

• A name can be one to eight characters in length
• A name must begin with a character (A-Z) or underscore (_)
• Letters, numbers, and underscores can follow the first character

Basic rules that apply to the use of symbolic variables include:

• Values range from 0 to 1024 bytes in length
• May be referenced (called) inside or outside of a macro by immediately prefixing an ampersand (&) before the

name
• The macro processor replaces (substitutes) the symbolic variable with the value of the symbolic variable

A couple examples are provided to help clarify the creation and use of macro variables.

References Inside a Macro:

%LET NAME=USERFILE.MASTER;
%MACRO M;
 PROC MEANS DATA=&NAME;
 RUN;
%MEND M;

References Outside a Macro:

PROC PRINT DATA=&NAME;
RUN;

Macro Functions
Macro functions are available to process text in macros and with macro variable values. Some macro functions are
associated with DATA step functions while others are used only in the macro processor. You may notice a similarity
between DATA step functions and macro functions. To illustrate how macro functions can be used, a few examples are
shown below.

Examples:

%INDEX(argument1,argument2)

%STR(argument)

%UPCASE(argument)

%BQUOTE(argument)

Macro Program Statements
The macro language provides a powerful language environment for users to construct and use macro programs. There
are a number of Macro program statements , many of which resemble DATA step statements in use and functionality.
Macro program statements are available to instruct the macro processor what to do. Each statement begins with a
percent sign (%) and is terminated with a semi-colon (;). The statements are executed by the macro processor and then
passed to either the DATA or PROC step for processing.

Examples:

%DO;

%END;

%GLOBAL macro-variable;

%MACRO name[(parameters)/STMT];

Macro Expressions
Macro expressions consist of macro statements, macro variable names, constant text, and/or function names combined
together. Their purpose is to tie processing operations together through the use of operators and parentheses.

Examples:

IF &TOTAL > 999 THEN WEIGHT=WEIGHT+1;

&CHAR = %LENGTH(&SPAN)

&COUNT = %EVAL(&COUNT + 1);

Tip #1 – Debugging a Macro with SAS System Options
The SAS System offers users a number of useful system options to help debug macro issues and problems. The
results associated with using macro options are automatically displayed on the SAS Log. Specific options related to
macro debugging appear in alphabetical order in the table below.

SAS Option Description
MACRO Specifies that the macro language SYMGET and SYMPUT functions be available.
MEMERR Controls Diagnostics .
MEMRPT Specifies that memory usage statistics be displayed on the SAS Log.
MERROR Presents Warning Messages when there are misspellings or when an undefined macro is called.
MLOGIC Macro execution is traced and displayed on the SAS Log for debugging purposes.
MPRINT SAS statements generated by macro execution are traced on the SAS Log for debugging

purposes.
SYMBOLGEN Displays text from expanding macro variables to the SAS Log.

Tip #2 – Using the Autocall Facility to Call a Macro
Macro programs can be stored as SAS programs in a location in your operating environment and called on-demand
using the built-in autocall facility. Macro programs stored this way are defined once, and referenced (or called)
anytime needed. This provides an effective way to store and manage your macro programs in a library aggregate. To
facilitate the autocall environment, you will need to specify the SAS System options presented in the following table.

SAS Option Description
MAUTOSOURCE Turns on the Autocall Facility so stored macro programs are included in the search for macro

definitions.
MRECALL Turns on the capability to search stored macro programs when a macro is not found.
SASAUTOS= Specifies the location of the stored macro programs.

Tip #3 – Accessing the SAS Institute-supplied Autocall Macros
Users may be unaware that SAS Institute has provided as part of your SAS software an the autocall library of existing
macros . These autocall macros are automatically found in your default SASAUTOS fileref. For example, the default
location of the SASAUTOS fileref under Windows XP Professional on my computer is c:\program files \sas \sas
9.1\core\sasmacro. Readers are encouraged to refer to the SAS Companion manual for the operating environment
you are running under for further details.

Numerous SAS-supplied autocall macros are included – many of which act and behave as macro functions. It is
worth mentioning that these autocall macros provide a wealth of effective coding techniques and can be useful as a
means of improving macro coding prowess in particular for those users who learn by example. The following table
depicts an alphabetical sampling of the SAS Institute-supplied autocall macros for SAS 9.1.

SASAUTOS
Macro Name

SASAUTOS Macro Description

%CHNGCASE This macro is used in the change dialog box for pmenus.
%CMPRES This macro returns the argument passed to it in an unquoted form with multiple blanks

compressed to single blanks and also with leading and trailing blanks removed.
%DATATYP The DATATYP macro determines if the input parameter is NUMERIC or CHARacter data, and

returns either CHAR or NUMERIC depending on the value passed through the parameter.
%LEFT This macro returns the argument passed to it without any leading blanks in an unquoted form.
%LOWCASE This macro returns the argument passed to it unchanged except that all upper-case alphabetic

characters are changed to their lower-case equivalents.
%SYSRC This macro returns a numeric value corresponding to the mnemonic string passed to it and

should only be used to check return code values from SCL functions.
%TRIM This macro returns the argument passed to it without any trailing blanks in an unquoted form.
%VERIFY This macro returns the position of the first character in the argument that is not in the target

value.

To help illustrate a SASAUTOS macro, we will display the contents of the %TRIM autocall macro below. The purpose
of the %TRIM autocall macro is to remove (or trim) trailing blanks from text and return the result.

%TRIM AUTOCALL Macro

%macro trim(value);
%***;
%* *;
%* MACRO: TRIM *;
%* *;
%* USAGE: 1) %trim(argument) *;
%* *;
%* DESCRIPTION: *;
%* This macro returns the argument passed to it without any *;
%* trailing blanks in an unquoted form. The syntax for its use *;
%* is similar to that of native macro functions. *;
%* *;

%* Eg. %let macvar=%trim(&argtext) *;
%* *;
%* NOTES: *;
%* None. *;
%* *;
%***;
 %local i;
 %do i=%length(&value) %to 1 %by -1;
 %if %qsubstr(&value,&i,1)^=%str() %then %goto trimmed;
 %end;
 %trimmed: %if &i>0 %then %substr(&value,1,&i);
%mend;

Tip #4 – Compiling a Stored Macro with the Compiled Macro Facility
A macro can be compiled once and the compiled version stored so it can be used over and over again. This
approach saves time and resources because the macro does not have to be compiled each time it is called. To take
advantage of this time-saving approach, you will need to either verify and/or turn on the SAS System options:
MSTORED and SASMSTORE. You will also need to specify the / STORE option of the %MACRO statement. It is
worth mentioning that during macro compilation only macro statements are compiled, so be aware that non-macro
text and macro references are not evaluated during the compilation phase – but during macro execution.

SAS Option Description
MSTORED Turns on the Compiled Macro Facility so you can take advantage of this feature.
SASMSTORE= Specifies the libref associated with the SAS catalog SASMACR. This catalog stores compiled

macros.

Tip #5 – Streamlining Command-line DMS Commands with a Macro
The macro language is a wonderful tool for streamlining frequently entered SAS Display Manager System (DMS)
commands to reduce the number of keystrokes. By embedding a series of DMS commands inside a simple macro,
you’ll not only save by not having to enter them over and over again, but you’ll improve your productivity as well. The
following macro code illustrates a series of DMS commands being strung together in lieu of entering them individually
on a Display Manager command line. The commands display and expand the SAS Log to full size respecitively, and
then position the cursor at the top of the log. Once the macro is defined, it can be called by entering %POSTSUBMIT
on any DMS command line to activate the commands .

Macro Code

%MACRO postsubmit;
 Log;
 Zoom;
 Top;
%MEND postsubmit;

Tip #6 – Assigning a Defined Macro to a Function Key
To further reduce keystrokes and enhance user productivity even further, a call to a defined macro can be saved to a
Function Key. The purpose for doing this would be to allow for one-button operation of any defined macro. To
illustrate the process of saving a macro call to a Function Key, the %POSTSUBMIT macro defined in the previous tip
is assigned to Function Key F12 in the KEYS window. The partial KEYS window is displayed to illustrate the process.

KEYS Window

Key Definition

F1 help
F2 reshow
F3 end;

... ...

F10 keys
F11 command focus
F12 %POSTSUBMIT

Tip #7 – Defining Positional Parameters
Macros are frequently designed to allow the passing of one or more parameters . This allows the creation of macro
variables so text strings can be passed into the macro. The order of macro variables as positional parameters is
specified when the macro is coded. The assignment of values for each positional parameter is supplied at the time
the macro is called.

To illustrate the definition of a two positional parameter macro, the following macro was created to display all table
names (data sets) that contain the variable TITLE in the user-assigned MYDATA libref as a cross-reference listing.
To retrieve the needed type of information, you could execute multiple PROC CONTENTS against selected tables. Or
in a more efficient method, you could retrieve the information directly from the read-only Dictionary table COLUMNS
with the selected columns LIBNAME, MEMNAME, NAME, TYPE and LENGTH, as shown. For more information
about Dictionary tables, readers may want to view the “free” SAS Press Webinar by Kirk Paul Lafler at
http://support.sas.com/publishing/bbu/webinar.html#lafler2 or the published paper by Kirk Paul Lafler, Exploring
Dictionary Tables and SASHELP Views.

Macro Code

%MACRO COLUMNS(LIB, COLNAME);
 PROC SQL;
 SELECT LIBNAME, MEMNAME, NAME, TYPE, LENGTH
 FROM DICTIONARY.COLUMNS
 WHERE UPCASE(LIBNAME)="&LIB" AND
 UPCASE(NAME)="&COLNAME" AND
 UPCASE(MEMTYPE)="DATA";
 QUIT;
%MEND COLUMNS;

%COLUMNS(MYDATA,TITLE);

After Macro Resolution

PROC SQL;
 SELECT LIBNAME, MEMNAME, NAME, TYPE, LENGTH
 FROM DICTIONARY.COLUMNS
 WHERE UPCASE(LIBNAME)="MYDATA" AND
 UPCASE(NAME)="TITLE" AND
 UPCASE(MEMTYPE)="DATA";
QUIT;

Output

Now let’s examine another useful macro that is designed with a positional parameter. The following macro is
designed to accept one positional parameter called &LIB. When called, it accesses the read-only Dictionary table
TABLES to display each table name and the number of observations in the user-assigned MYDATA libref. This
macro provides a handy way to quickly determine the number of observations in one or all tables in a libref without
having to execute multiple PROC CONTENTS by using the stored information in the Dictionary table TABLES.

Macro Code

%MACRO NUMROWS(LIB);
 PROC SQL;
 SELECT LIBNAME, MEMNAME, NOBS
 FROM DICTIONARY.TABLES
 WHERE UPCASE(LIBNAME)="&LIB" AND
 UPCASE(MEMTYPE)="DATA";
 QUIT;
%MEND NUMROWS;

%NUMROWS(MYDATA);

After Macro Resolution

Output

Library Column Column
Name Member Name Column Name Type Length
MYDATA ACTORS Title char 30
MYDATA MOVIES Title char 30
MYDATA PG_MOVIES Title char 30
MYDATA PG_RATED_MOVIES Title char 30
MYDATA RENTAL_INFO Title char 30

PROC SQL;
 SELECT LIBNAME, MEMNAME, NOBS
 FROM DICTIONARY.TABLES
 WHERE UPCASE(LIBNAME)="MYDATA" AND
 UPCASE(MEMTYPE)="DATA";
QUIT;

 Library Number of Physical
 Name Member Name Observations
 MYDATA MOVIES 22
 MYDATA CUSTOMERS 3
 MYDATA MOVIES 22
 MYDATA PATIENTS 7
 MYDATA PG_MOVIES 13
 MYDATA PG_RATED_MOVIES 13

Conclusion
The macro language provides SAS users with a powerful language environment for constructing a library of powerful
tools, routines, and reusable programs. It offers a comprehensive set of statements , options, functions , and has its own
compiler. Once written and debugged macro programs can be stored in a location on your operating environment that can
be referenced and accessed using an autocall macro environment. Macros can also be compiled providing for a more
efficient process for executing macros because the macro does not have to be compiled over and over again. Finally,
users are able to design and construct reusable macro tools that can be used again and again.

References
Burlew, Michele M. (1998), SAS Macro Programming Made Easy, SAS Institute Inc., Cary, NC, USA.
Carpenter, Art (2004), Carpenter’s Complete Guide to the SAS Macro Language, Second Edition. SAS Institute Inc.,

Cary, NC, USA.
Lafler, Kirk Paul (2004), PROC SQL: Beyond the Basics Using SAS, SAS Institute Inc., Cary, NC, USA.
Lafler, Kirk Paul (2007), SAS System Macro Language Course Notes, Fourth Edition. Software Intelligence

Corporation, Spring Valley, CA, USA.
Lafler, Kirk Paul (2006), Exploring DICTIONARY Tables and SASHELP Views, Software Intelligence Corporation,

Spring Valley, CA, USA.
Roberts, Clark (1997), “Building and Using Macro Variable Lists,” Proceedings of the Twenty-second Annual SAS

Users Group International Conference, San Diego, CA, 441-443.
SAS Macro Language: Reference, SAS OnlineDoc® 9.1.3, SAS Institute Inc., Cary, NC, USA.

Acknowledgments
I would like to thank Tom Winn, SCSUG 2007 Hands -on Workshops Section Chair and Keith Cranford, SCSUG 2007
Program Chair for accepting my abstract and paper, as well as the SCSUG Leadership for their support of a great
Conference.

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. and other countries. ® indicates USA registration.

About the Author
Kirk Paul Lafler is consultant and founder of Software Intelligence Corporation and has been programming in SAS
since 1979. As a SAS Certified Professional and SAS Institute Alliance Member (1996 – 2002), Kirk provides IT
consulting services and training to SAS users around the world. As the author of four books including PROC SQL:
Beyond the Basics Using SAS (SAS Institute. 2004), Kirk has written more than two hundred peer-reviewed papers
and articles that have appeared in professional journals and SAS User Group proceedings. He has also been an
Invited speaker at more than two hundred SAS International, regional, local, and special-interest user group
conferences and meetings throughout North America. His popular SAS Tips column, “Kirk’s Korner of Quick and
Simple Tips”, appears regularly in several SAS User Group newsletters and Web sites, and his fun-filled SASword
Puzzles is featured in SAScommunity.org.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Software Intelligence Corporation

World Headquarters
P.O. Box 1390

Spring Valley, California 91979-1390
E-mail: KirkLafler@cs.com

