
Handling Dates in the Macro Facility
Toby Dunn, AMEDDC&S, Fort Sam Houston

Abstract

Ah, shimmering SAS® date and time values. They brighten our code everywhere, from input, through
processing, to output. For the most part these values pose no ambiguity, they are simply formatted
integers vividly manipulated with arithmetic, formats, and interval based functions. Alas, when we try to
use date and time values in SAS Macro, things start looking dark. The clarity we know and love becomes
murky and unclear. Should they be this dim and shadowy? I say no! With the light of knowledge and a
few dazzling macro functions this darkness can be illuminated like the shining sun rising after a moonless
night. This papers intended audience is beginner and intermediate SAS programmers.

Introduction

Programmers who are new to the macro language find handling Date, DateTime, and Time values can
be quit perplexing. The reason for this is that the Macro Language is essentially a text handling language,
while the most efficient way to handle Date and Time values is to convert them to SAS Date and Time
values (a numeric scaler). To compensate for lack of macro know-how, programmers, tend to use the
more familiar Data _Null_ step to handle all the date and time manipulation.

Example 1

%Let Date = 01JAN2006 ;

Data _null_ ;
Call Symput('Date' , put(input("&Date" , Date9.) , WordDate20.)) ;

Run ;

%Put &Date ;
January 1, 2006

However, handling Date and Time values in a Data _Null_ step unnecessarily complicates and
clutters the macro code while preventing the programmer from creating a function style macro. This
paper demonstrates how to use %Sysevalf and %Sysfunc along with Inputn, Putn, Intck, and Intnx to
manipulate Date and Time values in the macro language without the help of a Data _Null_ step.

%Sysevalf

Date and Time literals are the easiest way to get a Date and/or Time value into a SAS Date and/or
Time value. So we shall start with these.

Example 2

Data Step Code

Data _null_ ;

Date = '01JAN2006'd ;
DateTime = '01JAN2006:12:30:00'dt ;

1

Time = '12:30:00't ;

Put Date=

Datetime=
Time= ;

Run ;

Date=16802 DateTime=1451737800 Time=45000

Macro Equivalent

%Put Date = %Sysevalf('01JAN2006'd)

DateTime = %Sysevalf('01JAN2006:12:30:00'dt)
Time = %Sysevalf('12:30:00't) ;

Date = 16802 DateTime = 1451737800 Time = 45000

The actual Date and Time literal code is the same whether it is in the data step or macro. The only
difference is that to accomplish the same task in the macro language one has to use the literal values
inside of the %Sysevalf function. While the %Eval function is used for most of the numeric operations in
the macro language it also performs character comparisons. Thus the Date, DateTime, and Time that
follow the quoted Date and Time values for literals are considered as true characters and not part of the
Date and Time values.

%Sysfunc, InputN and PutN

While Date and Time literals are nice they don’t allow for little flexibility in reading the Date and Time
values of different forms into SAS and they don’t allow the programmer to format these SAS Date and
Time values. To do this in the macro language one needs to move beyond the %Sysevalf function. In
the data step these functions are performed by the Input and Put function. It just so happens that the
macro language can utilize most of the data step functions with the %Sysfunc macro function. However,
the Input and Put functions are not among them, what %Sysfunc can use instead is the InputN and
PutN data step functions.

Example 3

Data Step Code

Data _null_ ;

Date = Input('01JAN2006' , Date9.) ;
DateTime = Input('01JAN2006:12:30:00' , DateTime18.) ;
Time = Input('12:30:00' , Time8.) ;
Date2 = Put(Date , Date9.) ;
DateTime2 = Put(DateTime , DateTime18.) ;
Time2 = Put(Time , Time8.) ;

Put Date= Date2=
Datetime= DateTime2=
Time= Time2= ;

Run ;

Date=16802 Date2=01JAN2006
DateTime=1451737800 DateTime2=01JAN06:12:30:00
Time=45000 Time2=12:30:00

2

Macro Equivalent

%Let Date = %Sysfunc(InputN(01JAN2006 , Date9)) ;
%Let Date2 = %Sysfunc(PutN(&Date , Date9)) ;

%Let DateTime = %Sysfunc(InputN(01JAN2006:12:30:00 , DateTime18)) ;
%Let DateTime2 = %Sysfunc(PutN(&DateTime , DateTime18)) ;

%Let Time = %Sysfunc(InputN(12:30:00 , Time8)) ;
%Let Time2 = %Sysfunc(PutN(&Time , Time8)) ;

%Put Date = &Date Date2 = &Date2
DateTime = &DateTime DateTime2 = &DateTime2
Time = &Time Time2 = &Time2 ;

Date = 16802 Date2 = 01JAN2006
DateTime = 1451737800 DateTime2 = 01JAN06:12:30:00
Time = 45000 Time2 = 12:30:00

Please note that in the macro code the first argument to the InputN and PutN functions need not be
quoted and doing so could introduce errors. Remember that the macro facility considers everything not
preceded by a % or & to be text, which is different from the data step where words have meaning and we
quote the words we want to be considered as text. The other thing of significance is that the informat and
format used in the InputN and PutN can be any valid SAS informat or format and there is no trailing
decimal. Here the macro facility uses decimals to determine the end of a macro variables name. When a
format in this context uses a decimal SAS has to make a decision as to whether the decimal means the
end of a macro variable name or a format. Since it is used in the macro facility it merely gets consumed
by the macro processor.

Before moving on I would also like to note that the %Sysfunc has a second argument which allows
the programmer to add a format to be applied to the result of the function referenced by %Sysfunc.

Example 4
%Put %Sysfunc(InputN(01JAN2006 , Date9) , MonYY7) ;
JAN2006

Intck and Intnx

One of the more common problems that programmers encounter is to find how many units (days, months,
years) one date is from another or how to increase or decrease a Date and Time value by a certain
amount of units. Intck and Intnx are used in the data step. We will also use %Sysfunc as we did in the
previous section and then access these functions. This provides as transparent an equivalent as
possible.

Example 5

Data Step Code
Data _null_ ;
StartDate = '01JAN2004'd ;
EndDate = '01JAN2006'd ;
NumOfMonths = Intck('Month' , StartDate , EndDate) ;
NewDate = Intnx('Month' , StartDate , NumOfMonths) ;

Put StartDate= EndDate= NumOfMonths=

3

NewDate= Date9. ;
run ;

StartDate= 16071 EndDate= 16802 NumOfMonths= 24 NewDate= 01JAN2006

Macro Equivalent

%let StartDate = %Sysevalf('01JAN2004'd) ;
%let EndDate = %Sysevalf('01JAN2006'd) ;
%let NumOfMonths = %Sysfunc(Intck(Month , &StartDate , &EndDate)) ;
%let NewDate = %Sysfunc(Intnx(Month , &StartDate , &NumOfMonths)) ;

%put StartDate = &StartDate
EndDate = &EndDate
NumOfMonths = &NumOfMonths
NewDate = &NewDate ;

StartDate = 16071 EndDate = 16802 NumOfMonths = 24 NewDate = 16802

Again as in the previous set of examples the constant text values of the Intck and Intnx functions do not
need to be in quotes. Otherwise they work exactly the same as they do in the data step. Finally, notice
the value of the macro variable NewDate, it is a SAS Date value. While this is good for manipulating the
value it is hard for humans to read. The simplest way to change the printed values is to use the second
argument to the %Sysfunc as in example 6.

Example 6

%let NewDate = %Sysfunc(Intnx(Month , &StartDate , &NumOfMonths) , WordDate20) ;
%put NewDate = &NewDate ;

NewDate = January 1, 2006

Conclusion

This paper does cover all of the date and Time functions that can be utilized, but rest assured that
one can use these in the macro language by imbedding them in a %Sysfunc. I hope that I have
provided, through the examples shown, the knowledge and ability to forego using Data _Null_ steps
to simply manipulate Date and Time values in the macro facility.

Thanks to: Paul St. Louis, Paul Choate, Ron Fehd, and Nat Wooding for their kind words,
technical review and editing abilities.

Contact Information
Your comments and questions are valued and encouraged. Contact the author at:

Toby Dunn
AMEDDC&S Fort Sam Houston, Tx

tobydunn@hotmail.com

4

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

5

